Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells

Identifieur interne : 001107 ( Main/Repository ); précédent : 001106; suivant : 001108

Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells

Auteurs : RBID : Pascal:13-0303930

Descripteurs français

English descriptors

Abstract

Indium Tin Oxide (ITO) is one of the most used anode materials in organic solar cells. ITO is a brittle material, however, in roll-to-roll manufacturing plants and final applications material flexibility is beneficial. This study examines the flexibility limits of ITO in applications manufacturing photovoltaic cells. First, ITO was bent using different cylinders to achieve different sample bending curvatures and thus different stages of breaking. Next, the conductivity of ITO was measured and surface topology was profiled. As a result, it was discovered that samples start to break even with low bending curvatures, and while no changes are detected in the surface profile, conductivity starts to decrease. When the cracks start to appear on the surface of ITO, a specific radius of curvature is discernible. In this critical bending curvature resistance and its relative standard deviation start to increase faster. Optical profilometer examination revealed that the cracks reach the ITO surface at the same moment. After this critical bending curvature, clear positive correlation was observed between the conductivity and the number of cracks. To test the effect of cracked ITO on the performance of solar cells, solar cells were produced on top of the cracked ITO layer. The measurements showed that cracks did not decrease the performance of solar cell. This fact supports the use of ITO-based organic photovoltaic cells in applications where flexibility is required as well as in roll-to-roll manufacturing.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0303930

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells</title>
<author>
<name sortKey="Lepp Nen, Kimmo" uniqKey="Lepp Nen K">Kimmo Lepp Nen</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Oulu, Department of electrical engineering, Optoelectronics and Measurement Techniques Laboratory, Erkki Koiso-Kanttilankatu 3</s1>
<s2>90570 Oulu</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>90570 Oulu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Augustine, Bobins" uniqKey="Augustine B">Bobins Augustine</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Oulu, Department of electrical engineering, Optoelectronics and Measurement Techniques Laboratory, Erkki Koiso-Kanttilankatu 3</s1>
<s2>90570 Oulu</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>90570 Oulu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Saarela, Juha" uniqKey="Saarela J">Juha Saarela</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Oulu, Department of electrical engineering, Optoelectronics and Measurement Techniques Laboratory, Erkki Koiso-Kanttilankatu 3</s1>
<s2>90570 Oulu</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>90570 Oulu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Myllyl, Risto" uniqKey="Myllyl R">Risto Myllyl</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Oulu, Department of electrical engineering, Optoelectronics and Measurement Techniques Laboratory, Erkki Koiso-Kanttilankatu 3</s1>
<s2>90570 Oulu</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>90570 Oulu</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Fabritius, Tapio" uniqKey="Fabritius T">Tapio Fabritius</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>University of Oulu, Department of electrical engineering, Optoelectronics and Measurement Techniques Laboratory, Erkki Koiso-Kanttilankatu 3</s1>
<s2>90570 Oulu</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>Finlande</country>
<wicri:noRegion>90570 Oulu</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0303930</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0303930 INIST</idno>
<idno type="RBID">Pascal:13-0303930</idno>
<idno type="wicri:Area/Main/Corpus">000737</idno>
<idno type="wicri:Area/Main/Repository">001107</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0927-0248</idno>
<title level="j" type="abbreviated">Sol. energy mater. sol. cells</title>
<title level="j" type="main">Solar energy materials and solar cells</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Anode</term>
<term>Brittle material</term>
<term>Crack</term>
<term>Electrode material</term>
<term>Flexibility</term>
<term>ITO layers</term>
<term>Indium oxide</term>
<term>Manufacturing</term>
<term>Organic solar cells</term>
<term>Performance evaluation</term>
<term>Photovoltaic cell</term>
<term>Radius of curvature</term>
<term>Roll-to-roll process</term>
<term>Solar cell</term>
<term>Standard deviation</term>
<term>Surface conductivity</term>
<term>Thin film</term>
<term>Tin addition</term>
<term>Topology</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Couche ITO</term>
<term>Addition étain</term>
<term>Cellule solaire organique</term>
<term>Matériau électrode</term>
<term>Anode</term>
<term>Fabrication industrielle</term>
<term>Flexibilité</term>
<term>Cellule solaire</term>
<term>Dispositif photovoltaïque</term>
<term>Rayon courbure</term>
<term>Topologie</term>
<term>Conductivité superficielle</term>
<term>Fissure</term>
<term>Ecart type</term>
<term>Evaluation performance</term>
<term>Oxyde d'indium</term>
<term>Matériau fragile</term>
<term>Couche mince</term>
<term>ITO</term>
<term>Procédé roll-to-roll</term>
</keywords>
<keywords scheme="Wicri" type="concept" xml:lang="fr">
<term>Fabrication industrielle</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Indium Tin Oxide (ITO) is one of the most used anode materials in organic solar cells. ITO is a brittle material, however, in roll-to-roll manufacturing plants and final applications material flexibility is beneficial. This study examines the flexibility limits of ITO in applications manufacturing photovoltaic cells. First, ITO was bent using different cylinders to achieve different sample bending curvatures and thus different stages of breaking. Next, the conductivity of ITO was measured and surface topology was profiled. As a result, it was discovered that samples start to break even with low bending curvatures, and while no changes are detected in the surface profile, conductivity starts to decrease. When the cracks start to appear on the surface of ITO, a specific radius of curvature is discernible. In this critical bending curvature resistance and its relative standard deviation start to increase faster. Optical profilometer examination revealed that the cracks reach the ITO surface at the same moment. After this critical bending curvature, clear positive correlation was observed between the conductivity and the number of cracks. To test the effect of cracked ITO on the performance of solar cells, solar cells were produced on top of the cracked ITO layer. The measurements showed that cracks did not decrease the performance of solar cell. This fact supports the use of ITO-based organic photovoltaic cells in applications where flexibility is required as well as in roll-to-roll manufacturing.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0927-0248</s0>
</fA01>
<fA03 i2="1">
<s0>Sol. energy mater. sol. cells</s0>
</fA03>
<fA05>
<s2>117</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells</s1>
</fA08>
<fA11 i1="01" i2="1">
<s1>LEPPÄNEN (Kimmo)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>AUGUSTINE (Bobins)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>SAARELA (Juha)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>MYLLYLÄ (Risto)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>FABRITIUS (Tapio)</s1>
</fA11>
<fA14 i1="01">
<s1>University of Oulu, Department of electrical engineering, Optoelectronics and Measurement Techniques Laboratory, Erkki Koiso-Kanttilankatu 3</s1>
<s2>90570 Oulu</s2>
<s3>FIN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>5 aut.</sZ>
</fA14>
<fA20>
<s1>512-518</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>18016</s2>
<s5>354000501971110780</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>24 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0303930</s0>
</fA47>
<fA60>
<s1>P</s1>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Solar energy materials and solar cells</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>Indium Tin Oxide (ITO) is one of the most used anode materials in organic solar cells. ITO is a brittle material, however, in roll-to-roll manufacturing plants and final applications material flexibility is beneficial. This study examines the flexibility limits of ITO in applications manufacturing photovoltaic cells. First, ITO was bent using different cylinders to achieve different sample bending curvatures and thus different stages of breaking. Next, the conductivity of ITO was measured and surface topology was profiled. As a result, it was discovered that samples start to break even with low bending curvatures, and while no changes are detected in the surface profile, conductivity starts to decrease. When the cracks start to appear on the surface of ITO, a specific radius of curvature is discernible. In this critical bending curvature resistance and its relative standard deviation start to increase faster. Optical profilometer examination revealed that the cracks reach the ITO surface at the same moment. After this critical bending curvature, clear positive correlation was observed between the conductivity and the number of cracks. To test the effect of cracked ITO on the performance of solar cells, solar cells were produced on top of the cracked ITO layer. The measurements showed that cracks did not decrease the performance of solar cell. This fact supports the use of ITO-based organic photovoltaic cells in applications where flexibility is required as well as in roll-to-roll manufacturing.</s0>
</fC01>
<fC02 i1="01" i2="X">
<s0>001D06C02D1</s0>
</fC02>
<fC02 i1="02" i2="X">
<s0>001D05C</s0>
</fC02>
<fC02 i1="03" i2="X">
<s0>001D05I03D</s0>
</fC02>
<fC02 i1="04" i2="X">
<s0>230</s0>
</fC02>
<fC03 i1="01" i2="3" l="FRE">
<s0>Couche ITO</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="3" l="ENG">
<s0>ITO layers</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Addition étain</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>Tin addition</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Adición estaño</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Cellule solaire organique</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Organic solar cells</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="X" l="FRE">
<s0>Matériau électrode</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="ENG">
<s0>Electrode material</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="X" l="SPA">
<s0>Material electrodo</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="X" l="FRE">
<s0>Anode</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="ENG">
<s0>Anode</s0>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="X" l="SPA">
<s0>Anodo</s0>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Fabrication industrielle</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Manufacturing</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="X" l="FRE">
<s0>Flexibilité</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="ENG">
<s0>Flexibility</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="X" l="SPA">
<s0>Flexibilidad</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="X" l="FRE">
<s0>Cellule solaire</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="ENG">
<s0>Solar cell</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="X" l="SPA">
<s0>Célula solar</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="X" l="FRE">
<s0>Dispositif photovoltaïque</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="ENG">
<s0>Photovoltaic cell</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="X" l="SPA">
<s0>Dispositivo fotovoltaico</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="X" l="FRE">
<s0>Rayon courbure</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="ENG">
<s0>Radius of curvature</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="X" l="SPA">
<s0>Radio curvatura</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Topologie</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>Topology</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Topología</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="X" l="FRE">
<s0>Conductivité superficielle</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="ENG">
<s0>Surface conductivity</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="X" l="SPA">
<s0>Conductividad superficial</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Fissure</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Crack</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Fisura</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="X" l="FRE">
<s0>Ecart type</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="ENG">
<s0>Standard deviation</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="X" l="SPA">
<s0>Desviación típica</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="X" l="FRE">
<s0>Evaluation performance</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="ENG">
<s0>Performance evaluation</s0>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="X" l="SPA">
<s0>Evaluación prestación</s0>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="X" l="FRE">
<s0>Oxyde d'indium</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="ENG">
<s0>Indium oxide</s0>
<s5>22</s5>
</fC03>
<fC03 i1="16" i2="X" l="SPA">
<s0>Indio óxido</s0>
<s5>22</s5>
</fC03>
<fC03 i1="17" i2="X" l="FRE">
<s0>Matériau fragile</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="ENG">
<s0>Brittle material</s0>
<s5>23</s5>
</fC03>
<fC03 i1="17" i2="X" l="SPA">
<s0>Material frágil</s0>
<s5>23</s5>
</fC03>
<fC03 i1="18" i2="X" l="FRE">
<s0>Couche mince</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="ENG">
<s0>Thin film</s0>
<s5>24</s5>
</fC03>
<fC03 i1="18" i2="X" l="SPA">
<s0>Capa fina</s0>
<s5>24</s5>
</fC03>
<fC03 i1="19" i2="X" l="FRE">
<s0>ITO</s0>
<s4>INC</s4>
<s5>82</s5>
</fC03>
<fC03 i1="20" i2="X" l="FRE">
<s0>Procédé roll-to-roll</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fC03 i1="20" i2="X" l="ENG">
<s0>Roll-to-roll process</s0>
<s4>CD</s4>
<s5>96</s5>
</fC03>
<fN21>
<s1>287</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Main/Repository
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 001107 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Repository/biblio.hfd -nk 001107 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Main
   |étape=   Repository
   |type=    RBID
   |clé=     Pascal:13-0303930
   |texte=   Breaking mechanism of indium tin oxide and its effect on organic photovoltaic cells
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024